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Dehydrogenation of [{(silox)3Nb}2(h-1,2;
h-5,6-C8H8)] (silox� tBu3SiO) to
[{(silox)3Nb}2(h-1,2;h-5,6-C8H6)] and
Its Subsequent Alkene-to-Alkylidene
Rearrangement**
Adam S. Veige, Peter T. Wolczanski,* and
Emil B. Lobkovsky

The observed pyridine ring-opening of [(silox)3Nb(h-C,N-
C5H5N)] (silox� tBu3SiO) to [(silox)3Nb�CHCH�CHCH�
CHN�Nb(silox)3], and related picoline chemistry[1, 2] suggest-
ed that carbon ± carbon bond scission might occur by similar
pathways. 1,3,5,7-Cyclooctatetraene (COT) was considered a
prime candidate for ring opening because of its lack of
resonance stabilization energy, but in binding to two [(silox)3-
Nb] units, COT functions as an aromatic dianion, which
directs the chemistry toward CÿH bond activation, dehydro-
genation, and a subsequent alkene-to-alkylidene rearange-
ment.

Reduction of [(silox)3NbCl2] (1)[3] with Na/Hg in THF with
three equivalents of COT present resulted in the isolation of
brown [(silox)3Nb(h-C8H8)] (2-COT, 40 %) [Eq. (1)].

[(silox)3NbCl2]�L (excess) ÿ!THF; 24 h

Na=Hg; ÿ2 NaCl
[(silox)3NbL] (1)

2-L (L�COT, cC6H10)

Abstraction of 4-picoline from [(silox)3Nb(h-C,N-4-
MeC5H4N)] (2-4-pic) by [(silox)3Ta][2] in the presence of 2-
COT afforded [(silox)3Ta(h-4-pic)] and burgundy, crystalline
[{(silox)3Nb}2(h-1,2;h-5,6-C8H8)] (22-COT, 33 %, Scheme 1).
The synthesis of 22-COT must occur under mild conditions to
avoid further reaction (vide infra). An X-ray crystal structure
determination of 22-COT[4, 5] revealed the [(silox)3Nb] moi-
eties (d(NbÿC)� 2.20(5) � (av))[6, 7] in an anti-h2,h2-config-
uration about a planar COT ligand, although disorder
problems hampered further analysis. The insolubility of 22-
COT in unreactive hydrocarbon solvents prevented spectral
characterization.

Upon thermolysis of two equivalents of [(silox)3Nb(h-C,N-
4-MeC5H4N)] (2-4-pic) and COT, 2-COT and presumably 22-
COT were generated in situ, and dehydrogenation led to the
gold-brown cyclooctatrieneyne[8] complex, [{(silox)3Nb}2(h-
1,2;h-5,6-C8H6)] (4 ; Scheme 1). Although 4 was isolated in
50 % yield, 1H NMR spectroscopy revealed the conversion to
be >95 % when the reaction was monitored in a sealed tube
(C6D6). Olefin substitution reactions of 2-4-pic, such as the
synthesis of the 1-butene complex, [(silox)3Nb(h2-C4H8)] (2-
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C4H8) [Eq. (2)], had been previously established,[2] and
provided a practical synthesis of 4.

[(silox)3Nb(4-pic)]� 1-butene ÿ!85 o C; 13 h

C6 H62-4-pic
[(silox)3Nb(h2-C4H8)]� 4-picoline

(2)

2-C4H8

Direct thermolysis of 22-COT also afforded 4, but in lesser
purity. The single-crystal X-ray structure determination of 4 is
shown in Figure 1.[5, 9] 1,2-Alkyne ligation (d(NbÿC)�
2.091(8), 2.092(9) �; d(CÿC)� 1.364(14) �) is distinct from

Figure 1. Molecular structure of 4. Selected distances [�] and angles [8]:
Nb1-O 1.903(31) av, Nb2-O 1.912(47) av; Nb1-C1-C8 150.9(7), Nb1-C2-C3
152.3(8), Nb1-C1-C2 71.4(5), Nb1-C2-C1 71.4(5), C2-C1-C8 136.7(9), C1-
C2-C3 135.7(9), Nb2-C5-C4 111.2(6), Nb2-C6-C7 124.3, Nb2-C5-C6
72.6(6), Nb2-C6-C5 70.7(6), C4-C5-C6 131.3(9), C5-C6-C7 135.8(9).

5,6-alkene binding (d(NbÿC)� 2.153(10),
2.177(9) �; d(CÿC)� 1.335(12) �) as the
near planarity of the C8-C1-Nb-C2-C3 atoms
attests.

The reversibility of the 22-COT!4 conver-
sion was probed by thermolysis of 4 under H2.
Instead, dihydrogen catalyzed the rearrange-
ment of 4 to the orange alkylidene ± yne
complex, [{(silox)3Nb}2(h1;h2-4,5-C8H6)] (6,
Scheme 1). Although 6 was isolated in about
40 % yield, the reaction was observed to be
virtually quantitative when monitored in a
sealed tube by 1H NMR spectroscopy; with-
out dihydrogen, the conversion took three
days at 155 8C. The single-crystal X-ray struc-
ture determination of 6 is shown in Fig-
ure 2.[5, 10] The alkyne is slightly skewed
(d(NbÿC)� 2.056(10), 2.145(11) �), the
niobium ± alkylidene bond length of
1.971(10) � is normal,[1, 11] and the methylene
is a substituent on the alkylidene moiety.

When [{(silox)3Nb}2(h1;h2-4,5-C8H5D)] (6-
D) was synthesized from 4 and D2 in a sealed
tube, its 1H NMR spectrum revealed that the
intensity of the methylene resonance at d�
4.70 was halved, consistent with the incorpo-
ration of one deuterium atom. The overlap-

ping doublet of triplets at d� 6.31 assigned to a proton
adjacent to the methylene group became a doublet of
doublets, and HD (solution) was observed as a 1:1:1 triplet
at d� 4.42 (C6D6). Variable-temperature 1H NMR resonance
experiments provided evidence in solution for the ring pucker
observed in the solid-state structure of 6. Decoalescence of
the CHH' group into two broad resonances was attributed to a
ring inversion barrier of DG=� 10.7(3) kcal molÿ1. The label-
ing experiment is consistent with hydrogenation of the alkene
of 4 to form transient alkyl-hydride 5, followed by an a-H-
abstraction[12] by the hydride to give the alkylidene 6 (see
Scheme 1, ). The hydrogenation of 4 may occur through a

Scheme 1. Synthesis of 22-COT and its subsequent reactions to give 6.

Figure 2. Molecular structure of 6 ; C8 is the the methylene group. Selected
distances [�] and angles [8]: Nb1-O 1.897(23) av, Nb2-O 1.900(30) av; Nb1-
C1-C2 107.0(8), Nb1-C1-C8 129.2(8), C1-C8-C7 108.5(9), Nb2-C4-C3
149.4(8), Nb2-C5-C6 156.8(8), Nb2-C4-C5 77.5(7), Nb2-C5-C4 69.3(7),
C3-C4-C5 129.0(10), C4-C5-C6 132.2(11).
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standard H2 (D2) oxidative addition to the putative NbIII ±
alkene center of 4 followed by insertion to give 5, or by a
mechanistically indistiguishable s-bond metathesis path.

The COT dehydrogenation and rearrangement reactions
prompted an investigation of simple olefin complexes. Ex-
tended thermolysis of [(silox)3Nb(h2-cC6H10)] (2-cC6H10,
[Eq. (1)], 40 %) induced the rearrangement to the cyclo-
hexylidene complex, [(silox)3Nb�C(CH2)4CH2] (7-cC6H10,
69 % yield) [Eq. (3)]. Likewise, rearrangement of 1-butene

complex [(silox)3Nb(h2-C4H8)] (2-C4H8) to the butylidene
complex [(silox)3Nb�CH(CH2)2CH3] (7-C4H8) was evidenced
[Eq. (4)]. Thermolyses under H2 led to olefin hydrogenation.

As Scheme 1 indicates, a logical dehydrogenation sequence
involves CÿH bond activation of 22-COT to give an inter-
mediate alkenyl ± hydride (3), followed by a b-H abstraction
by the hydride[13±15] to afford 4 and dihydrogen. An alternative
path requires b-H elimination to a d0 alkyne ± dihydride
intermediate and subsequent elimination of H2. Upon CÿH
bond activation, the COT likely remains a planar dianion in
the alkenyl hydride (3) derived from 22-COT. A b-abstraction
by the niobium hydride of 3 is aided by the favorable
geometry of the planar COT, whose b-hydrogen atom is
jammed into the Nb center (aNb-C-C �a/C-C-H� 112.58);
b-abstractions are known to be exquisitely sensitive to
geometry.[13] An alkene-to-alkylidene transformation[16±20]

would incur a disruption in the resonance stabilization energy
of the C8H8

2ÿ ligand of 22-COT. As Figure 1 reveals, the
dehydro-COT ligand of 4 has lost its dianionic character,
hence its rearrangement to the alkylidene occurs rather than
another dehydrogenation. Investigations continue into the
mechanism of the olefin-to-alkylidene (e.g., 4!6, 2-C4H8!
6-C4H8 and 2-cC6H10!6-cC6H10) rearrangements that provide
a rationale for the generation of olefin metathesis catalysts.

Experimental Section

All manipulations were performed by using either glovebox (N2) or high-
vacuum techniques (Ar), and dried, deoxygenated solvents.

2-COT: A 50 mL flask was charged with [(silox)3NbCl2] (1) (1.00 g,
1.23 mmol), 1,3,5,7-cyclooctatetraene (386 mg, 3.70 mmol), 0.9% Na/Hg
(2.1 equiv, 70 mg Na in 7.75 g Hg) and THF (20 mL) at 77 K. Upon stirring
at 23 8C for 28 h, dark brown 2-COT (410 mg, 40 %) was obtained from cold
(ÿ78 8C) diethyl ether. 1H NMR (C6D6, 23 8C, TMS): d� 1.23 (s, 81H;
tBu), 5.64 (s, 8 H; C8H8); 13C{1H} NMR: d� 24.18 (C(CH3)3), 31.35
(C(CH3)3), 112.17 (HC); elemental analysis calcd (%) for C44H89Si3O3Nb:
C 62.7, H 10.6; found: C 60.4, H 10.1.

2-cC6H10: A 100 mL flask charged with 1 (1.50 g, 1.85 mmol), 0.65 % Na/Hg
(2.1 equiv, 89 mg Na in 13.76 g Hg), C6H10 (3 mL), and THF (30 mL, 77 K).
Upon stirring at 23 8C for 12 h, green 2-cC6H10 (600 mg, 40 %) was obtained

from hexanes. 1H NMR (400 MHz, C6D6, 23 8C, TMS): d� 1.25 (s, 81H;
tBu), 1.50 ± 1.86 (m, 4H; CgH2), 2.38 ± 2.66 (m, 4H; CbH2), 2.78 (m, 2H;
CaH); 13C{1H} NMR (C6D6, 23 8C): d� 23.90 (C(CH3)3), 25.07 (Cg), 28.46
(Cb), 31.21 (C(CH3)3), 70.76 (Ca); elemental analysis calcd (%) for
C42H91Si3O3Nb: C 61.4, H 11.2; found: C 61.2, H 11.0.

22-COT: A 25 mL vial was charged with a mixture of [(silox)3Nb(4-pic)] (2-
4-pic) (209 mg, 0.252 mmol) and [(silox)3Ta] (208 mg, 0.252 mmol). The
mixture was dissolved in C6H12 (5 mL), shaken vigorously for 2 min, and
left undisturbed for 45 min; a solution of 2-COT (230 mg, 0.252 mmol) in
cyclohexane (3 mL) was added. The solution turned dark burgundy after it
had been shaken vigorously for 30 s. Burgundy 22-COT precipitated
(260 mg, 33%) from this solution after it had been left to stand undisturbed
for 24 h.

4 : A 25 mL flask charged with 2-4-pic (500 mg, 0.600 mmol), 1,3,5,7-
cyclooctatetraene (0.5 equiv, 31 mg, 0.30 mmol), and benzene (20 mL) was
refluxed at 85 8C for four days. Golden brown 4 was isolated from pentane
(232 mg, 50 %). 1H NMR (C6D6, 23 8C, TMS): d� 1.25 (s, 81H; tBu), 1.33 (s,
81H; tBu), 3.19 (s, 2H, Nb(h2-CHCH)), 6.81 (m, 2 H;ÿCH�), 6.98 (m, 2H;
ÿCH�); 13C{1H} NMR: d� 23.94 (C(CH3)3), 24.18 (C(CH3)3), 31.39
(C(CH3)3) 31.43 (C(CH3)3), 80.16 (Nb(h2-CHCH)), 125.42, 129.07
(CH�CH).

2-C4H8: A 50 mL bomb flask was charged with 2-4-pic (500 mg,
0.600 mmol), C6H6 (20 mL), and 1-butene (ca. 5 equiv) at 77 K and placed
in an 85 8C oil bath for 13 h. Green 2-C4H8 (385 mg, 81 %) was isolated
upon removal of the volatiles. 1H NMR (C6D6, 23 8C, TMS): d� 1.24 (s,
81H; tBu), 1.35 (t, 3 H; CH3), 1.73 (m, 1H; CH2�CHÿ), 1.95 (dd, 1H;
CH2�CH), 2.5 (m, 1H; CH2�CH), 2.69 (m, 2H; CH2); 13C{1H}: d� 21.14
(CH3), 23.85 (C(CH3)3), 31.11 (C(CH3)3) 33.82 (CH2), 70.12, 84.02
(CH2�CH); elemental analysis calcd (%) for C40H89Si3O3Nb: C 60.4, H
11.3; found: C 60.3, H 11.3.

6 : A 50 mL bomb charged with 4 (80 mg, 0.050 mmol), benzene (10 mL)
and H2 (500 Torr; 77 K) was placed in a 70 8C oil bath for about two days.
Crystallization from pentane at ÿ78 8C afforded orange 6 (30 mg, 40%).
1H NMR (C6D6, 23 8C, TMS): d� 1.27 (s, 81H; tBu), 1.32 (s, 81H; tBu), 4.70
(br d, 3J� 8 Hz, 2 H; CH2), 6.31 (dt, 3J� 10, 8 Hz, 1 H; CH2CH�), 7.20 (d,
3J� 10 Hz, 1H;�CHÿ), 8.30 (d, 3J� 11 Hz, 1 H; Nb�CCH�CHÿ), 5.70 (d,
3J� 11 Hz, 1 H;�CHÿ); 13C{1H} NMR (C6D6, 23 8C): d� 23.36 (C(CH3)3),
23.45 (C(CH3)3), 30.68 (C(CH3)3) 30.90 (C(CH3)3), 41.82 (CH2), 111.75,
132.34, 134.73, 137.43 (ÿC�), 206.63, 211.54 (NbCC).

7-cC6H10: A 50 mL glass bomb charged with 2-cC6H10 (600 mg, 0.732 mmol)
and benzene (25 mL) was placed in an 85 8C bath for 13 days. Green 7-
cC6H10 (415 mg, 69%) was obtained from pentane. 1H NMR (C6D6, 23 8C,
TMS): d� 1.16 (m, 2H; CdH2), 1.28 (s, 81 H; tBu), 1.59 (m, 4H; CgH2), 3.78
(m, 4H; CbH2); 13C{1H} NMR: d� 23.67 (C(CH3)3), 26.96 (Cd), 29.12 (Cg),
31.07 (C(CH3)3), 40.99 (Cb), Ca not observed; elemental analysis calcd (%)
for C42H89Si3O3Nb: C 61.6, H 11.9; found: C 60.9, H 11.8.

7-C4H8: A 50 mL bomb charged with 2-C4H8 (350 mg, 0.440 mmol) and
benzene (20 mL) was heated at 155 8C for 8.5 h. Red 7-C4H8 (90 mg, 26%)
was obtained from cold (ÿ78 8C) Et2O. 1H NMR (C6D6, 23 8C, TMS): d�
0.86 (t, J� 7.2 Hz, 3 H; CH3), 1.12 (m, 2H; CH2), 1.29 (s, 81 H; tBu), 3.49 (m,
J� 7.2 Hz, 2 H; CH2), 8.17 (bs, 1H; Nb�CH); 13C{1H} NMR: d� 13.74
(CH3), 26.71 (CH2), 23.96 (C(CH3)3), 30.99 (C(CH3)3), 44.10 (CH2), 249.0
(Nb�C, HMQC).; elemental analysis calcd (%) for C40H89Si3O3Nb: C 60.4,
H 11.3; found: C 60.2, H 11.4.
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Enantioselective Total Synthesis of the
Cyclophilin-Binding Immunosuppressive Agent
Sanglifehrin A**
Maosheng Duan and Leo A. Paquette*

The sanglifehrins are structurally unusual Streptomyces
metabolites discovered in a soil sample from Malawi.[1] The A
factor 1 holds particular interest because of its strong cyclo-
philin-binding properties and remarkable capability to inhibit
the proliferation of B and T cells. Since neither FK binding
protein binding activity nor calcineurin-inhibiting capability is
displayed, 1 exerts its powerful immunosupressive action in a
manner quite different from that adopted by cyclosporin A,
FK506, and rapamycin.[2, 3] The complex structural and stereo-
chemical features associated with 1 and its congeners,
ultimately corroborated by partial[4] and total synthesis,[5]

have provided a bevy of challenging opportunities for de
novo molecular assembly.

Recent synthetic efforts in this laboratory have resulted in
the successful acquisition of certain subunits central to the
construction of sanglifehrin A (1) in convergent and highly
enantiocontrolled fashion.[6] Herein, we report useful refine-
ments in these protocols as well as the successful conjoining of
components 2 ± 4 to arrive at 1 having all of its seventeen
stereogenic centers properly installed.
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